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Abstract: This study addresses the challenge of numerically simulating nonlinear elastoplastic behavior in solid mechanics via the finite-
volume method (FVM) that has not been traditionally dominant in the field. The study presents the implementation of a new FVM code tai-
lored for nonlinear elastoplasticity of the modified Cam-clay model via OpenFOAM (version 2.3.0), an open-source C++ library primarily
used for computational fluid dynamics, where OpenFOAM’s capabilities are extended to, unlike conventional fluid mechanics applications,
model solid mechanics problems. This implementation utilizes an implicit–explicit split strategy to effectively handle nonlinearity and dis-
placement coupling inherent in solid mechanics. Additionally, a novel single-cell correction procedure is proposed to, when plasticity occurs,
adjust stress and plastic strain incrementally. Our results, validated against benchmark tests, demonstrate a good alignment with expected
outcomes and show notable computational time savings compared to the traditional FEMs by Abaqus (version 6.14) simulations for the
cases examined here. The insights gained in this study reveal the potential of FVMs not only for elastoplasticity modeling but also for
more complex multiphysics simulations involving coupled fluid and solid dynamics. This capability positions FVMs as a promising tool
for addressing a wide range of problems in geotechnical and subsurface engineering, highlighting the innovative integration of methodologies
across disciplinary boundaries. DOI: 10.1061/IJGNAI.GMENG-9842. © 2025 American Society of Civil Engineers.
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Introduction

Numerical analyses play a significant role in evaluating the stability
and safety of geotechnical and subsurface engineering in both the
design and in-service stages. This is particularly in the case and
valuable when the nonlinear mechanical behavior of geomaterials
needs to be taken care of; nevertheless, analytical solutions for
the problem are impossible to obtain, or field tests are difficult to
conduct and/or the cost for conducting such tests is very demanding
and expensive. Some examples are dynamic earthquake issues
(Andrade and Borja 2006; Sevim 2011; Fatahi and Tabatabaiefar
2014), tunnel damage prevention evaluations (Lai et al. 1998;
Addenbrooke and Potts 2001; Anastasopoulos et al. 2007),
foundation-bearing capacity and slope stability analyses (Eid
2013; Franza and Sheil 2021; Gao et al. 2022), and assessments
and applications of biogeochenics (Fauriel and Laloui 2012;
Martinez et al. 2014; Wang et al. 2023a, b; Bai et al. 2024, in
press; Mao et al. 2024; Yazdani et al. 2024).

The modified Cam-clay model (MCC) is one of the elastoplastic
models and can characterize the nonlinear stress–strain behavior of
cohesive soils subjected to the three-dimensional state of stress
(Borja and Kavazaniian 1985). The MCC was developed and mod-
ified by Roscoe and Burland (1968) in terms of the original Cam-
clay model (Roscoe et al. 1958) for having an ellipse for the yield
surface instead of a log arc in the original form. One main problem
for a log arc shape is that the yield locus at the largest value of the
mean effective stress is not differentiable, which would cause
stability issues in numerical analyses. Apparent advantages of the
MCC include its simplicity and capability to characterize the me-
chanical behavior of soils realistically (Perić 2006) and that the
MCC model requires a small number of material properties easily
obtained from traditional laboratory tests and also contains features
such as pressure sensitivity and hardening/softening responses
(Borja and Lee 1990). Due to these merits, the MCC has been
broadly employed to analyze the soil mechanical behavior and
the associated foundation deformation or slope failure in geotech-
nical engineering (Borja and Lee 1990; Borja and Tamagnini
1998; Taiebat et al. 2011; El Kamash and Han 2014; Heidarzadeh
2021).

In the literature, the method to numerically implement MCC,
first of all, comes to the FEM due to its popularity in computational
solid mechanics. A prominent example is a series of work of Borja
and his colleagues on FEM numerical formulations and modeling
of soil MCC-based plasticity, including implicit integration
(Borja and Lee 1990), an improved stress integration algorithm ac-
counting for nonlinear elasticity (Borja 1991), an extension of the
infinitesimal strains to finite strains (Borja and Tamagnini 1998),
and an anisotropic bounding surface model with nonlinear hypere-
lasticity and ellipsoidal loading functions (Borja et al. 2001). Also,
the MCC has been implemented in numerical codes like FLAC3D

(version 7.0) (Itasca 2009) using the finite-difference method
(FDM). For instance, using FLAC3D, El Kamash and Han (2014)
showed that the verified MCC-based model could provide reason-
able predictions for assessing damages caused by widening an
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existing column-supported embankment over soft soils and found
that the maximum settlement occurs at the base of the widened por-
tion of the embankment.

Other than FEMs and FDMs, the finite-volume method (FVM)
is a well-known and the most prevalent technique in the field of
computational fluid dynamics (CFD). The comparison between
FDMs and FVMs is relatively few. However, in general, the
FDM is based on the differential form of governing equations at
each nodal point, where each derivative is approximated in terms
of a Taylor series expansion. The FVM, however, discretizes the
domain into finite volumes based on the integral form of governing
equations. Simple schemes of FVMs could reduce to FDMs
(Aleksendric and Carlone 2015). As for FVMs and FEMs, three
distinctions between them appear and might make FVMs appeal-
ing: (1) FVMs directly discretize the strong integral form of gov-
erning equations, which is different from FEMs that employ the
weak form to cast the strong form of governing equation before dis-
cretization; (2) FVMs usually differ from FEMs without the re-
quirement of shape functions, and in FVMs, different shapes of
finite-volume cells (i.e., elements in FEM) are discretized in the
same manner; and (3) the FVM is, in general, relatively easy to
use for model numerical implementations because the FVM theory
is based on balancing forces acting on a volume cell. This simplic-
ity stands in contrast to FEMs, which entail more complex mathe-
matical frameworks.

Given the FVM benefits mentioned previously, the use of FVMs
has increasingly gained momentum in the field of computational
solid mechanics rather than only in CFD. The pioneering work is
Demirdžic et al. (1988), who numerically simulated thermome-
chanical responses of the welded workpiece. Many studies then
have emerged to explore FVMs for solid mechanics, and Cardiff
and Demirdžić (2021) comprehensively summarized the progress
of the last 30-year work in this regard. It turns out that FVMs
have been successfully employed in viscoelasticity (Demirdžić
et al. 2005), elastoplasticity (Maneeratana 2000), thermo-
hydroelasticity (Demirdžić et al. 2000), poroelasticity and
poro-elastoplasticity (Tang et al. 2015; Asadollahi 2017), fracture
mechanics (Cardiff et al. 2015), finite strains and rotations (Bije-
lonja et al. 2005; Cardiff et al. 2012a), and many others. At some
point, FVMs have some advantages of modeling solid mechanics
problems. For example, a block-coupled finite-volume methodol-
ogy could be more efficient in both computer memory and compu-
tation cost than Abaqus (version 6.11-1) FEMs for linear elasticity
with unstructured meshes (Cardiff et al. 2016). Additionally, the
FVM solver for contact mechanics exhibits a flexible ability to
maintain contact convergences with larger values of the scaling fac-
tor, whereas small values are typically used in FEM simulations
(Cardiff et al. 2012b). So, the success in various FVM applications
for solid mechanics above has shown the intrinsic and good ability
of FVMs to deal with nonlinear mechanics problems. However, de-
spite the achievements from the aforementioned work, efforts are
still needed to develop new FVM-based numerical codes, specifi-
cally those for soil and rock mechanics for geotechnical engineer-
ing, and to the best of the authors’ knowledge, no research is
reported on the FVM methodology for the MCC.

This study thus presents the implementation of a new numeri-
cal FVM-based code for the MCC as an example of model dem-
onstration for elastoplasticity. This FVM-based implementation
methodology is generally applicable to any material model besides
MCC, contributing to the field of computational solid mechanics
using an alternative, FVMs. The implementation is achieved
using OpenFOAM (version 2.3.0), which is the popular open-
source C++ library originally developed by Weller et al. (1998)
and has been widely used for solid mechanics mentioned above

and multiphysics simulations (Greenshields et al. 1999; Cardiff
et al. 2015; Tang et al. 2015; Tuković et al. 2018; Bao and Liu
2019; Bao et al. 2020a, b). This could make this FVM solver pub-
lic to be freely used and to be feasibly coupled with pore-water
pressure and temperature, etc., in the same FVM framework for
multiphysics simulations. In the implementation, the implicit–ex-
plicit split strategy used by Demirdžic et al. (1988) and Tang et al.
(2015) is adopted here to handle the nonlinearity and displacement
coupling in the MCC. However, a novel approach, i.e., a single-
cell correction procedure, is proposed to correct the incremental
stress and plastic strain when plasticity occurs. The FVM imple-
mentation of the MCC into OpenFOAM is verified and tested
against triaxial compression tests and a foundation-bearing capac-
ity problem.

The organization of this paper is as follows. The “Model The-
ory” section presents the essential assumptions and concepts of
the MCC for the FVM implementation. In the “Numerical Method”
section, the FVM methodology is detailed, including governing
equations, FVM discretization, solution algorithm and workflow,
and analytical solutions used for the MCC implementation verifica-
tion. The “Numerical Test Examples” section presents the applica-
tion of the implementation to triaxial compression tests and a
foundation-bearing capacity problem including a verification anal-
ysis. A discussion is presented in the “Discussion” section regard-
ing insights and a comparison analysis with Abaqus FEM
simulations. A follow-up is conclusions and recommendations
for future efforts.

Model Theory

The soil elastoplastic model adopted in this paper is the MCC. As
its detailed derivation can be found in the published work (Roscoe
et al. 1958; Roscoe and Burland 1968), this section presents some
crucial assumptions and concepts of the MCC below.

Three variables in MCC are used to characterize the state of a
soil specimen, i.e., effective mean stress p′, deviatoric stress q,
and specific volume Vs. p′ and q can be computed by the effective
principal stresses σ′1, σ

′
2, and σ′3 via

p′ = −
σ′1 + σ′2 + σ′3

3

q =

���������������������������������������
(σ′1 − σ′2)

2 + (σ′2 − σ′3)
2 + (σ′3 − σ′1)

2
√

��
2

√

⎧⎪⎪⎪⎨
⎪⎪⎪⎩ (1)

Here and throughout, strain and stress are both taken to be neg-
ative in compression. This sign convention has been adopted here
to align with the default settings in OpenFOAM, although a posi-
tive convention is often used in soil mechanics. A negative sign
is thus added to p′, rendering its sign positive. The specific volume
Vs is calculated in terms of the void ratio e via Vs= 1+ e. The crit-
ical state where the soil distorts at a constant state of stress without
a volume change is described by the critical state line (CSL).
Fig. 1(a) shows the CSL in the p′–q plane and the MCC elliptic
yield curve. The slope of the CSL is defined as M= q/p′, which
is one of the soil characteristics. In the yield curve, p′0 is the largest
value of the mean effective stress, also known as the preconsolida-
tion pressure, in determining the size of the yield surface. The MCC
yield function is formulated by

Y =M 2 p′2 −M 2 p′0 p
′ + q2 (2)

The CSL in the Vs− ln p′ space is parallel to the normal com-
pression line (NCL) shown in Fig. 1(b). So, both lines have the
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same slope λm. Using λm and Vs, the NCL can be calculated by

Vs = Nm − λm ln p′ (3)

where Nm= specific volume at unit mean effective stress p′ =
1 kPa. Under compression for drained conditions, the swelling
line with the slope κ characterizes the unloading–reloading behav-
ior of soils [Fig. 1(b)]. So, in addition to M, λm, Nm, and κ are also
characteristic properties of soils. Those four properties are soil-
dependent and can be determined by triaxial compression tests
(Silvestri and Abou-Samra 2011; Dai and Qin 2013). Note that M
can also be determined by M= 6 sin φ′/(3− sin φ′) if the friction
angle at the critical stateφ′ is given (Silvestri and Abou-Samra 2011).

There are three more parameters and/or assumptions needed to
illustrate for constitutive modeling of the MCC. The first is the as-
sumption of hardening and softening responses, depending on the
location of the yielding occurrence. The softening behavior is ex-
hibited if yielding occurs to the left side of the point at which the
CSL intersects a yield surface in Fig. 1(a) (i.e., shrinking). The
hardening behavior, however, appears if yielding occurs to the
right side of that point (i.e., expanding). Such hardening is mainly
discussed in this paper.

The second is the overconsolidation ratio (OCR) defined as
OCR = p′0/ p

′ to know the state where the maximum stress level
is previously experienced. So, OCR can be determined when p′0
is given. OCR greater than, equal to, and less than 1, respectively,
represents an over-, normal-, and underconsolidated state at
which soils have experienced in comparison with the present stress
level p′.

The last is the determination of which soil elastic parameter to
be a constant for MCC constitutive modeling. Usually, three elastic
parameters are utilized, i.e., shear modulus G, bulk modulus K, and
Poisson’s ratio v. For the MCC, K is not constant but changes with
p′, computed by

K =
Vs p′

κ
(4)

So, MCC constitutive modeling calculates K via Eq. (4) without
a prior specification. Yet, either G or v needs to be specified as a
constant to compute the other one via

v =
3K − 2G

2G + 6K
, given G

G =
3K(1 − 2v)

2(1 + v)
, given v

⎧⎪⎪⎨
⎪⎪⎩ (5)

For example, if v is given to be a constant,G is no longer a cons-
tant and is calculated via Eq. (5). Each as a constant is fine for MCC
constitutive modeling, but this study adopts v as a constant for illus-
tration in the numerical implementation.

Numerical Method

Governing Equation and FVM Implementation

For a solid body element, the momentum equation for steady-state
conditions without the body force is governed by (Dym and
Shames 1973)

∇ · σ = ∇ · (σ′ − pwI) = 0 (6)

where σ= total stress tensor; pw= pore fluid pressure; ∇= diver-
gence operator; and I= identity tensor (note stress is negative in
compression). For a drained condition mainly discussed here,
σ = σ′ is true, and we thus utilized σ and ignored the superscript
(′) for all variables in the following for simplicity.

The constitutive relation between stress and strain for linear iso-
tropic elasticity can be expressed in terms of the incremental form

dσ = De[dεt − dεp] (7)

where De= fourth-order stiffness matrix (note that De is formulated
by Lame’s constants μ and λ in OpenFOAM for linear elasticity,
where μ is the shear modulus and λ is the first Lame constant.
Here and throughout, μ=G holds true, meaning that both have
the same shear modulus. Since the use of μ is conventional in
FVM, the following adopts μ for illustration); dεt is the total strain,
and dεp is the plastic strain. Employing the small-strain assump-
tion, dεt can be computed using the incremental displacement dD
(Dym and Shames 1973)

dεt =
1

2
[∇(dD) + ∇(dD)T ] (8)

where ∇= gradient operator. Substituting Eqs. (7) and (8) into Eq.
(6), we obtain the steady-state governing equation for the MCC
with De expressed by μ and λ (Greenshields 2015)

∇ ·{[μ∇(dD)T + λItr(∇dD)+μ∇(dD)]︸																				︷︷																				︸
total strain part

− [2μ(dεp)+ λItr(dεp)]︸											︷︷											︸
plastic strain part

}=0

(9)

where tr()= trace operator. The three components associated with
dD in Eq. (9) are coupled with each other. To deal with this in
FVM simulations, the segregated solution approach is usually em-
ployed, in which there is only one unknown field per equation and
each system of equations is solved individually and in sequence
(Versteeg and Malalasekera 2007). Here, this segregated approach
is applied in a way that the total strain part in Eq. (9) is rewritten by
arranging μ∇(dD) and λtr(∇dD) in the form shown in Eq. (10) to
have both explicit and implicit terms [plastic strain part for nonlin-
earity is also treated explicitly], also called an implicit–explicit split

(a) (b)

Fig. 1. Soil mechanical behavior for the MCC: (a) MCC yield surface; and (b) NCL and swelling line under compression. (Reprinted with permission
from Springer Nature: Springer, Acta Geotechnica, “Performance of constitutive models in predicting behavior of remolded clay,” L. S. Bryson and
A. Salehian, © 2011.)
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strategy detailed later in the “FVM Discretization” section

∇ · [(2μ + λ)∇(dD)]︸											︷︷											︸
implicit

=∇ · [2μ(dεp) + λItr(dεp)]
︷														︸︸														︷plastic

︸														︷︷														︸
explicit

− ∇ · [μ∇(dD)T + λItr(∇dD) − (μ + λ)∇(dD)]︸																											︷︷																											︸
explicit

(10)

This arrangement could well improve the convergence of the
FVM global iterative solution procedure, as has been done by
Tang et al. (2015) by balancing the explicit and implicit terms as-
sociated with dD.

The boundary condition prescribed on a boundary of a compu-
tational domain could be traction, displacement, or pressure in a
fixed or varying type. The treatment of displacement conditions
is straightforward, yet the fulfillment of the momentum balance
on boundary patches (i.e., surfaces) in OpenFOAM, if traction or
pressure is applied, should be guaranteed because an external
force or pressure applied on boundary patches will be treated as
contributions into the source term (Tang et al. 2015). Since dD is
computed in FVM simulations via Eq. (10), traction force and pres-
sure conditions need to be converted into a form formulated in
terms of dD derived from dT = dσ · n (Greenshields 2015)

∇(dD) · n =
dT − dpbc · n

2μ + λ
+
[2μ(dεp) + λItr(dεp)] · n

2μ + λ

−
[μ∇(dD)T + λItr(∇dD) − (μ + λ)∇(dD)] · n

2μ + λ
(11)

where dT= incremental traction; dpbc= incremental pressure; dσ
comprises one implicit term and two explicit terms derived from
Eq. (10) excluding the divergence operation; and n= outward-
pointing surface/patch unit normal vector on the boundary. Eq.
(11) ensures that any traction or pressure prescribed on boundary
patches will be internally transformed into a displacement term.
Note that only one traction or pressure input is, in general, needed
for boundary conditions in FVM simulations. For instance, dT is a
zero tensor if dpbc is defined on a boundary patch. It is also worth
mentioning that the displacement coupling and nonlinearity in Eq.
(11) will be treated and solved using the implicit–explicit split strat-
egy as well.

FVM Discretization

The FVM requires the discretization of time, space, and model gov-
erning equations ready for conducting simulations. For the MCC,
since the steady-state condition is considered, time discretization
is avoidable here, but the time in FVM is discretized into a finite
number of time increments in governing equations to be solved
using schemes like the Euler implicit method.

There are several space discretization methods available in the
literature, such as the cell-centered approach (Demirdžic et al.
1988; LeVeque 2002) and the vertex-centered approach (Fryer
et al. 1991; Xia et al. 2007). Here, we adopt the cell-centered ap-
proach, and Fig. 2 shows a typical control volume ΩP consisting
of the computational point P in the cell center, face f and its area
vector Sf, center point Nc of a neighboring cell that shares the
same face f, distance vector df between P and Nc through f, and po-
sitional vector xp. This space discretization fashion is the same for
any polyhedral cell shape of ΩP such as tetrahedral and hexahedral
with no difference. It should be noted that in some cases with non-
orthogonality, for example, the conventional five-point stencil
FVM scheme in solving two-dimensional (2D) problems may

cause some issues of nonconvergence; therefore, the impact on
the FVM accuracy caused by nonorthogonality with some stencil
FVM schemes and unstructured meshes like tetrahedra should be
carefully assessed to add nonorthogonality or skewness corrections
and other treatments in FVM calculations (Moraes et al. 2013).
These, however, are not considered and discussed here. In this
study, structured meshes are utilized to discretize the FVM compu-
tational domain.

The discretization of Eq. (10) applied to each finite-volume cell
and Eq. (11) applied on each boundary patch is the volume integral
over ΩP and then converted to the surface integral using Gauss’s
theorem (Katz 1979). The surface integral for Eq. (10) [the same
form for Eq. (11)] is formulated by

∮
S
n · [(2μ + λ)∇(dD)]dS︸														︷︷														︸

implicit

︷														︸︸														︷total

=
∮
S
n·[2μ(dεp) + λItr(dεp)]dS

︷																︸︸																︷plastic

︸																︷︷																︸
explicit

total

−
∮
S
n · [μ∇(dD)T + λItr(∇dD) − (μ + λ)∇(dD)] dS

︷																														︸︸																														︷
︸																														︷︷																														︸

explicit

(12)

Because both implicit and explicit parts are involved, there is a
slight difference between implicit discretization and explicit discre-
tization as in the following for isotropic and homogeneous condi-
tions considered here.

For the explicit discretization, two explicit terms in Eq. (12) are
approximated via the following equations, respectively, by convert-
ing the closed surface integral of Eq. (12) into a sum of linear var-
iations of the values across each cell face:∮

S
n·[2μ(dεp) + λItr(dεp)]dS

=
∑NFaces
f =1

nf ·[2μ(dεp)f + λItr(dεp)f ]Sf (13)

∮
S
n · [μ∇(dD)T + λItr(∇dD) − (μ + λ)∇(dD)]

dS =
∑NFaces
f =1

nf ·[μ[∇(dD)]Tf + λItr[(∇dD)]f − (μ + λ)[∇(dD)]f ]Sf

(14)

Fig. 2. General polyhedral control volume. (Reprinted with permission
from Springer Nature: Springer, Archives of Computational Methods in
Engineering, “Thirty years of the finite volume method for solid me-
chanics,” P. Cardiff and I. Demirdžić, © 2021.)
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where [(∇(dD)]f and (dεp)f at the surface centroid are the two key
components that correlate with two neighboring cells. The central
differencing scheme with a second-order accuracy is employed to
calculate these two components in terms of cell centroid values
available from the last iteration using (Greenshields 2015)

[(∇(dD)]f = fx[(∇(dD)]P + (1 − fx)[∇(dD)]N (15)

(dεp)f = fx(dεp)P + (1 − fx)(dεp)N (16)

where fx= interpolation weight within 0 and 1, computed by

fx =
|xNf − xf |

|(xf − xP) + (xNf − xf )| (17)

Substituting Eqs. (15) and (16) into Eqs. (13) and (14), respec-
tively, we obtain the discretized forms for the two explicit terms in
Eq. (10) as follows:

∮
S
n·[2μ(dεp) + λItr(dεp)]dS

=
∑NFaces
f =1

nf ·{2μ[ fx(dεp)P + (1 − fx)(dεp)N}Sf

+
∑NFaces
f =1

nf ·{λI[ fxtr(dεp)P + (1 − fx)tr(dεp)N}Sf (18)

∮
S
n · [μ∇(dD)T + λItr(∇dD) − (μ + λ)∇(dD)] dS

=
∑NFaces
f =1

nf ·[μ{fx[∇(dD)]TP + (1 − fx)[∇(dD)]TN}]Sf

+
∑NFaces
f =1

nf ·[λI{fxtr[∇(dD)]P + (1 − fx)tr[∇(dD)]N}]Sf

+
∑NFaces
f =1

nf ·[−(μ + λ){fx[∇(dD)]P + (1 − fx)[∇(dD)]N}]Sf

(19)

As for the implicit discretization of the implicit term in Eq. (10),
no interpolation like Eq. (15) is needed to compute [∇(dD)]f , but
instead, [∇(dD)]f is calculated via the assumption of a linear vari-
ation across f using

∮
S
n·[(2μ + λ)∇(dD)]dS =

∑NFaces
f =1

nf ·(2μ + λ)[∇(dD)]f Sf

=
∑NFaces
f =1

(2μ + λ)|nf | (dD)N − (dD)P
|df | Sf

(20)

It is worth noting that the traction boundary condition is discre-
tized into ∇(dD) on boundary patches, as mentioned previously,
explicitly treated as contributions to the source term in the FVM it-
erative solution procedure. The treatment of boundary conditions
utilizes the same implicit–explicit split strategy, so Eq. (11) can
be rewritten in the following converted manner for this strategy

to update the traction boundary iteratively, formulated by

(2μ+λ)[∇(dD)]bc ·nbc
︷												︸︸												︷total

︸												︷︷												︸
implicit

=(dT)bc−dpbc ·nbc
︷									︸︸									︷tractionandpressure

+[2μ(dεp)+λItr(dεp)] ·n
︷													︸︸													︷plastic

︸													︷︷													︸
explicit

−[μ∇(dD)T +λItr(∇dD)−(μ+λ)∇(dD)] ·n
︷																								︸︸																								︷total

︸																								︷︷																								︸
explicit

(21)

Solution Algorithm and Workflow

The “Governing Equation and FVM Implementation” section out-
lines the governing equations and variables pertinent to the MCC
model. In the “FVM Discretization” section, the FVM is employed
to discretize these equations, transforming them into solvable alge-
braic forms suitable for numerical computation. This section elab-
orates on the solution algorithm and workflow in OpenFOAM,
explaining how the discretized equations are implemented and
solved computationally using the specific approach and methodol-
ogies of OpenFOAM. Key variables addressed in the workflow in-
clude incremental displacements and derived strain and stress,
which are discretized across the computational grid using custom-
ized numerical techniques.

The segregated approach introduced previously is the solution
algorithm used here to solve the discretized form of Eq. (10) with
specified boundary conditions. This approach temporarily segre-
gates three parts of Eq. (10) to be solved sequentially within an iter-
ative sequence, implemented in OpenFOAM shown below, instead
of creating one and a big matrix equation for the entire system.

Because the implicit and explicit terms are solved individually,
as shown in Fig. 3, the Geometric Agglomerated Algebraic Multi-
grid method with the Gauss–Seidel scheme as a smoother (Golub
and Van Loan 2013) is used to provide the necessary coupling
for dD during FVM calculations, where the solution tolerance for
dD is set to 10−6.

It is evident that solving Eq. (10) eventually yields a solution for
dD. The total displacement is updated by a sum of the current con-
verged dDn and the previous total displacement Dn−1, and so is the
total stress σ, where dσ is calculated internally using∇(dD) (see sig-
maD inFig. 3).The solutionworkflowforupdatingD andσ is shown
in Fig. 4. Important remarks on D and σ updates are as follows:
Remark 1. The first solution for dσn in Step 2 is an elastic stress

guess using the soil elastic parameters μ and λ without the plas-
tic strain, namely, (dεp)n = 0 in Step 1. In this step, the initial
Young’s modulus Ei and Poisson’s ratio v are used to calculate
μ and λ.

Remark 2. In Step 3, the yield function is evaluated by Eq. (2) for
all finite-volume cells and boundary patches by accessing them
separately in OpenFOAM using forAll(variable,celli) and for-
All(variable.boundaryField(),patchi) in terms of the principal
stresses. In other words, both dσ and dεt calculated from Step
2 needed to be transformed into the principal space first, and
then, we used them to calculate p and q via Eq. (1) and update
K and G via Eqs. (4) and (5).

Remark 3. OpenFOAM has preimplemented Foam::eigen for cal-
culating eigenvalues and eigenvectors. This function, however,
always gave complex eigenvalues in OpenFOAM (version
2.3.0) calculations for cases we considered. So, a new function
for computing eigenvalues and eigenvectors was implemented
to solve this issue.

Remark 4. When plasticity occurs, a novel approach, i.e., single-
cell correction procedure, is proposed in Step 4 to correct dσ

© ASCE 04025122-5 Int. J. Geomech.
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and dεp, in which a new elastoplastic stiffness matrix Dep is con-
structed to calculate dσ. The idea is that we can calculate dσ via
two different ways expressed as

dσ = De[dεt − dεp] = Depdεt (22)

The former [i.e., Eq. (7)] in Eq. (22) is generally used in
OpenFOAM, but in Step 4, we used the latter to build Dep in

terms of De and the yield function Y via

Dep = De − h

De
∂Y
∂σ

( )
∂Y
∂σ

[ ]T
De

( )

∂Y
∂σ

[ ]T
De

∂Y
∂σ

( )
−Kp

(23)

Fig. 3. FVM code for illustration of the segregated approach implementation and sigmaD calculation. (Note that in OpenFOAM, fvm:: and fvc::
represent the implicit and explicit discretization operations, respectively, Laplacian=∇2, div=∇·, and grad=∇.)

Fig. 4. Solution workflow for the MCC. (Note that the load step in OpenFOAM here basically denotes the number of incremental load iterations to be
simulated.)
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where Kp= [var,var,var,0,0,0]T; var=−pp0(1+ ei)/1− κ; ei= ini-
tial void ratio; and h=Heaviside step function (h= 1 if plastic; oth-
erwise, h= 0). De in Eq. (23) is constructed in terms of varying K
and G and constant v.
Remark 5. Using the principal strains, the volumetric and devia-

toric strains can be calculated by εv = ε1 + ε2 + ε3 and (if ε1 is
in the loading direction) εq = 2(ε1 − ε3)/3, respectively, for a
triaxial compression test.

Remark 6. Because dσtrue is calculated using the principal stresses,
this dσtrue should be returned back to the general space based on
the preserved eigenvectors in Step 4.4.

Remark 7. After the solution procedure has obtained the corrected
dσ and dεp in Step 4.4 but before it goes to Step 5, p, q and Vs

are updated using the corrected total stress via Eqs. (1) and (24).
Then, updated p and Vs are used to update K, G, and λ accord-
ingly. In this situation, the material properties thus log one load
step behind the corresponding computation, but this error is
small if the loading step is small

Vs = Nm − λm ln p0 + κ ln (p0/p) (24)

The aforementioned MCC solution procedure has been imple-
mented as a newly developed solver called MCCFoam in Open-
FOAM. The verification and application of this solver are
detailed in the “Numerical Test Examples” section.

MCC Analytical Solution

The verification of the MCC implementation is an essential step to
examine the performance of the new MCCFoam solver developed
in this study. MCC analytical solutions will be a benchmark used to
evaluate the accuracy of this solver. The MCC analytical solution
for drained conditions adopted here comes from Perić (2006) for
the reduced form without one invariant θ from the three-invariant
Cam-clay model. The following shows two equations for the
total volumetric strain εv and the deviatoric strain εq utilized
below, and more details can be found in the cited reference
previously:

εv = εv,i +
1

Vs,i
ln

p

pi

( )−λm M2 + (q/p)2

M2 + (qi/pi)
2

( )κ−λm
[ ]

(25)

εq = εq,i +
1

Vs,i
ln

M − q/p

M − qi/pi

( )3(λm−κ)/M (M−3) M + q/p

M + qi/pi

( )3(λm−κ)/M (M+3)
[{

3 − q/p

3 − qi/pi

( )[6(λm−κ)/(9−M 2)]−[2κ(1+v)/3(1−2v)]
]}

−
2(λm − κ)

MVs,i
arctan

q/p

M

( )
− arctan

qi/pi
M

( )[ ] (26)

where subscript i= initial condition of a given variable.

Numerical Test Examples

Verification against Analytical Solution

Two verification examples are presented in this section for two
clays with different MCC parameters and sample shapes (i.e.,
cube and cylinder) to assess the performance of the MCCFoam
solver. The first example is carried out using London clay with a
cubic shape detailed in Silvestri and Abou-Samra (2011). As
shown in Fig. 5, the clay specimen is numerically discretized into
125 finite-volume cells with an equal-edge size of 4 mm to simulate
a triaxial compression test. MCC parameters for this clay and boun-
dary conditions prescribed in the FVM simulation are tabulated in
Table 1. It is a reminder that we use the zero pressure condition here
because the solver computes the incremental displacement rather
than the total one.

A comparison between FVM predictions and analytical solu-
tions computed by Eq. (26) for q versus εq and p versus εa is
shown in Fig. 6, where the relative error is also plotted. In this com-
parison, the cell shown in Fig. 5 is randomly selected from the do-
main as an example to obtain FVM simulation results. Two loading
increments applied on the +Y boundary are evaluated to test the
loading impact. It is seen in Fig. 6 that the FVM simulation results
agree very well with the analytical solutions for the two loading in-
crements analyzed here.

The second example is conducted using the Fujian soft marine
clay introduced by Dai and Qin (2013). The clay specimen was
shaped into a cylinder 80 mm in height and 39.1 mm in diameter

Fig. 5. Cubic clay specimen used in the simulation.

Table 1. MCC parameters for the London clay and boundary conditions
used in the simulation

Parameter Value Boundary Boundary condition

p0 (kPa) 206 +X Zero pressure and dD
λm 0.161 −X Zero pressure and dD
κ 0.062 +Y Pressure increment
v 0.3 −Y Zero dD
Ei (MPa) 7.975 +Z Zero pressure and dD
M 0.888 −Z Zero pressure and dD
Nm 2.858 — —
ei 1.0002 — —

Note: The soil parameters are referenced from Silvestri and Abou-Samra
(2011)
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[Fig. 7(a)]. The MCC parameters were experimentally determined,
and their values are detailed in Table 2. Here, we simulate one of
the consolidated-drained triaxial tests in Dai and Qin (2013) with
a confining pressure of 200 kPa. In the simulation, the specimen
discretization yields 18,000 finite-volume cells with an edge size
of approximately 2 mm for each. A 0.388 kPa pressure increment
is prescribed on the top surface of the specimen until 8 mm

deformation is finally induced in the loading direction, as shown
in Fig. 7(b).

Fig. 8 plots the comparison between FVM results and analytical
solutions for q versus εv. Similarly, an example cell shown in
Fig. 7(a) is chosen for FVM predictions. We can see that the
FVM predictions overlap the analytical solutions completely. The
comparisons in Figs. 6 and 8 indicate the high accuracy of the
MCCFoam solver developed in this study to simulate the soil elas-
toplastic behavior via the FVM.

Application in Bearing Capacity of Strip Footing

This section demonstrates the application of the MCCFoam
solver to analyze the load–deflection behavior of a flexible strip
foundation on clay detailed in Borja and Tamagnini (1998) and
Heidarzadeh (2021). Briefly, a uniformly distributed load is ap-
plied gradually over a half width of 2 m on a 5-m-thick and
20-m-long layer of soft clay (Fig. 9). The clay is assumed to
be homogeneous and isotropic and underlies the strip footing
with a rough and rigid boundary at the base. The MCC parame-
ters for this clay are detailed in Table 3 together with the boun-
dary conditions applied on the FVM boundary patches illustrated
in Fig. 9. Specifically, the left uses the symmetry boundary type
as it is a symmetrical plane. Zero traction/pressure and

(a)

(b)

Fig. 6. FVM predictions and analytical solutions: (a) q versus εq; and
(b) p versus εa.

(a) (b)

Fig. 7. Fujian soft marine clay: (a) configuration of the cylindrical specimen used in the simulation; and (b) deformation after shearing.

Table 2. MCC parameters for the Fujian soft marine clay

Parameter Value

p0 (kPa) 200
λm 0.1297
κ 0.0322
V 0.3
Ei (MPa) 16.83
M 1.344
Nm 2.9452
ei 1.258

Note: The parameters are referenced from Dai and Qin (2013).
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displacement are specified on the free surface as it is the ground
surface. The empty boundary type is applied on the front and
back which are the two planes perpendicular to the z-axis. Be-
cause a 2D case similar to that in Borja and Tamagnini (1998)

is considered here, the FVM calculation, therefore, does not in-
volve the front and back planes.

The soil domain is discretized into 400 finite-volume cells with
0.5 × 0.5 m for each. σ= 20 kPa is uniformly assumed as the initial
stress of the clay domain. Here, a load of 20 kPa is applied on the
load surface and is simulated as the vertical stress gradually in-
creasing from 0 to 20 kPa by an equal increment of 0.4 kPa. During
this process, the MCC constitutive model is utilized for evaluating
the bearing capacity of the clay that is assumed to be fully saturated.

Fig. 10 shows the vertical deformation profile when the load
reaches its maximum value of 20 kPa, where Dy deformation is ob-
served. For example, Points a, b, and c marked in Fig. 9 have the
maximum Dy deformation of −0.144, −0.074, and −0.04 m, re-
spectively, as shown in Fig. 11(a). Because of the vertical load
from the strip footing, σy at locations just underneath the strip foot-
ing (e.g., Points a, b, and c) decreases gradually with increasing
load [Fig. 11(b)], meaning that the soil gets more compressive at
Points a, b, and c. However, σy at Point d tends to increase a bit
after the loading, which means that the soil at this point becomes
less compressive. This is due to the free load at the top of Point
d, so the squeezed soil from the lateral due to the strip footing load-
ing results in an uplift in some soils adjacent to the loading area (see
Fig. 10, where some soils have a positive Dy value), causing the soil
at Point d, for example, to become slightly less compressive.

Significant deformation will occur if the load is increased to, for
example, 50 kPa. The small-strain assumption then does not hold in
this situation, and the finite-strain numerical approach is required.
Although not a focus of this study, it is worth noting that if the
finite-strain assumption is used in the MCC, the strip footing sim-
ulation would predict smaller Dy deformation than the small-strain
assumption assumed here. This is mainly because the finite-strain
solution will yield more significant Dx deformation, especially on
the ground surface (Borja and Tamagnini 1998).

Discussion

Computational Efficiency Analysis

For any numerical approach, two important aspects that we care
about are prediction accuracy and computational efficiency. The re-
sults in the “Numerical Test Examples” section have demonstrated
the good accuracy of the MCCFoam solver against the analytical
solutions for the cases examined previously. Another importance
of using the FVM is to assess its computational efficiency relative

Fig. 8. FVM predictions and analytical solutions for q versus εv.

Fig. 9. 2D FVM finite-volume cell layout for a strip footing problem.

Table 3. Parameters and boundary conditions for 2D strip footing
simulation

Parameter Value Boundary Boundary condition

p0 (kPa) 20 Left Symmetry
λm 0.13 Right Zero dD
κ 0.018 Free Zero traction and dD
V 0.3 Load Pressure increment
Ki (MPa) 1.9 Bottom Zero dD
Ei (MPa) 2.28 Front Empty
M 1.05 Back Empty
Nm 2.1 — —
ei 0.7106 — —

Note: The soil parameters are referenced from Borja and Tamagnini (1998)
and Heidarzadeh (2021).

Fig. 10. Vertical deformation at Load= 20 kPa in the FVM simulation.
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to other numerical methods. For this purpose, we compared FVM
predictions with FEM results via a popular commercial code, Aba-
qus, for the triaxial compression test using the C3D8 element (i.e.,
the second example in the “Verification against Analytical Solu-
tion” section). The Abaqus simulation uses the direct sparse solver,
while the OpenFOAM simulation uses the geometric agglomerated
algebraic multigrid solver. Both simulations use the fixed load step,
have almost the identical number of cells/elements (FVM uses a
few more; Table 5), and are conducted using one core on a laptop
computer with 12th Gen Intel I Core I i7-12700 2.10 GHz and
32.0 GB RAM.

As shown in Fig. 12, where the analytical solutions are also in-
cluded for a better comparison, FVM and FEM results are close to
each other. By comparison, FVM predictions surprisingly have a
better agreement than FEM results in contrast to analytical solu-
tions for the case discussed here because both Fig. 12 and Table 4
results for relative and absolute errors show that FVM predictions
have smaller errors and higher accuracy. This might be because the
FEM and FVM implementations for the MCC are very different in
solution algorithms and calculation procedures. It is, however, not
completely fair to conclude that FVM predictions are more accurate
than FEM predictions because the published work (Perre and
Passard 1995; Fang et al. 2002; Cardiff et al. 2016) has shown
that both FVM and FEM predictions are closely comparable with-
out significant differences.

For the consumed time, the computational cost between the two
numerical methods is compared in Table 5 for three cases with dif-
ferent mesh sizes. As can be seen, the Abaqus FEM scenario has
used more time for running a total time of 100 s. The OpenFOAM
FVM scenario is less expensive in computation and has obtained an
increase of over 98% in efficiency compared to the Abaqus FEM
scenario for all three mesh size cases considered here. In addition

to the comparison here for single core computing, the results
from the strip foundation problem on the pore-elastoplastic soil
(Tang et al. 2015) have also indicated that parallel computing
using OpenFOAM FVM has taken 17 min for the drained case
and 33 min for the undrained case, while these computational
times are much less than 15 and 6 h for the two cases taken by Aba-
qus FEM parallel computing, respectively. All of these do not mean
that the FVM is more accurate or faster than the FEM in terms of
simulation time and accuracy, but based on the results obtained
here, the analysis suggests that besides the FEM, the FVM is a
valuable alternative numerical method with the desired computa-
tional efficiency and thus deserved to be used for numerical analy-
ses of engineering problems.

FVM Application Potential for Geomechanics Modeling

This study has implied the potential of employing the FVM to solve
many more linear and/or nonlinear geomechanics problems (the
MCC illustrated as an example here) instead of the FEM that is al-
ways the first choice for many decades. One example is that based
upon the numerical implementation framework presented here,
the MCC implementation would be feasibly extended to the
three-invariant model for elastoplasticity (Alawaji et al. 1992) by
adding one more stress invariant θ other than p and q and also

(a)

(b)

Fig. 11. FVM results change with gradually increasing load: (a) Dy

versus Load; and (b) σy versus Load.

(a)

(b)

Fig. 12. Comparison of FVM and FEM predictions for a triaxial com-
pression test: (a) εa versus q; and (b) −Dy versus εq.

Table 4. Relative and absolute errors compared to analytical solutions

Method

Max. relative error Max. absolute error

εq (%) εv (%) εa (%) εq εv εa

Abaqus FEM 8.11 4.46 7.49 0.0069 0.0023 0.0076
OpenFOAM
FVM

2.67 0.33 2.26 0.0022 0.0002 0.0023
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extended to the Barcelona basic model for unsaturated-soil elasto-
plasticity (Alonso et al. 1990) and MCC-based poro-elastoplastic-
ity with the consideration of suction and pore pressure coupling,
respectively.

Besides that, using the FVM has advantages in performing mul-
tiphysics simulations involving geomechanics coupling. For exam-
ple, fluid–solid interaction problems need to couple two fields of
solid and fluid for analyses of many engineering problems. The ex-
isting methods, in most cases, rely on the coupling of either FEM–
FVM, FDM–FVM, or other approaches (Rutqvist 2011; Rutqvist
et al. 2011; To et al. 2020; Asadi and Ataie-Ashtiani 2021; Bao
et al. 2021a, b; Bao and Burghardt 2022; Wang et al. 2022;
Yang et al. 2024), where the FVM is solving fluid and the FEM/
FDM is solving solid. This way of coupling treats fluid and solid
governing equations in different implementation frameworks,
which is thus difficult to program and may frequently cause conver-
gence issues during information transfer and/or if a strongly nonlin-
ear coupling exists in equations. However, utilizing the FVM could
allow both fluid and solid to be performed and solved in the same
FVM framework. This framework could straightforwardly examine
fluid–solid equations, easily debug the program, and is unnecessary
to know theories of two numerical methods well at the same time.

Conclusions

This paper presents a new numerical code for modeling nonlinear
elastoplasticity based on the FVM. The MCC, chosen as an exam-
ple for materials such as soft soils, has been implemented into
OpenFOAM. The MCC implementation has been examined by ex-
amples including analytical solutions and FEM/FDM results for tri-
axial compression tests and bearing capacity of strip footing
problems. The accuracy of our MCC implementation has been
shown through a good agreement between FVM predictions and
benchmarks. The comparison analysis with Abaqus FEM simula-
tions also shows that the MCC solver developed based on the
FVM is more computationally efficient in saving time and cost.

Take advantage of the open-source platform, OpenFOAM
whose FVM classes and functions are free to use, the FVM-based
methodology presented in this study has revealed the application
potential of using the FVM as a viable alternative for multiphysics
simulations of many geotechnical and subsurface engineering prob-
lems. This study is the first attempt of our research at looking into
FVM-based modeling of nonlinear elastoplasticity, where drained
conditions are involved only and the segregated solution approach
is employed to consider the computational expense. Further re-
search is, of course, needed to extend the current study. Examples
of future work include integrating the kinematic condition of in-
compressibility into the current FVM-based numerical framework
to model the MCC behavior under undrained conditions, consider-
ing soil anisotropy, dilation, over-, and underconsolidation condi-
tions, analyzing the scalability of the FVM implementation
concerning memory usage and runtime efficiency for field-scale

applications, and developing a block-coupled approach in terms
of recent advances in FVM to improve the poor convergence that
the segregated solution approach may experience if a strong cou-
pling exists in equations.
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Notation

The following symbols are used in this paper:
De = elastic stiffness tensor;
Dep = elastoplastic stiffness tensor;
dD = incremental displacement;
dpbc = incremental pressure;
dT = incremental traction;
dεp = incremental plastic strain;
dεt = incremental total strain;

dσ true = true incremental stress after correction;
E = Young’s modulus;
e = void ratio;
ei = initial void ratio;
G = shear modulus;
h = Heaviside step parameter;
I = identity tensor;
K = bulk modulus;
M = CSL slope;
N = specific volume;

Nm = specific volume at unit mean stress;
n = current load step;

n− 1 = previous load step;
p = mean stress;

pw = pore fluid pressure;
p0 = preconsolidation pressure;
q = deviatoric stress;
Vs = specific volume;
v = Poisson’s ratio;
εq = deviatoric strain;
εv = total volumetric strain;
κ = slope of the swelling line;
λ = Lame’s constant;

λm = NCL slope;

Table 5. Comparison of computational cost for FEM and FVM

Method Mesh size (mm) No. cell/element Load step (MPa) Total time (s) Wall clock time (s) Increase in efficiency to Abaqus (%)

FEM 10 144 0.1 100 156 —
5 1,312 311
2 17,680 4,800

FVM 10 160 0.1 100 1 99.4
5 1,322 5 98.4
2 18,000 83 98.3

© ASCE 04025122-11 Int. J. Geomech.
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μ = G directly;
σ = total stress tensor; and
φ′ = friction angle at the critical state.
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