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Abstract: This paper reports a comprehensive study including detailed experimental, theoretical, and numerical analyses to evaluate the
performance of two predominant soil-structure interaction models, that is, the Winkler model and Pasternak model, in predicting the pre-
dominant natural frequency (PNF) of structures partially embedded in soils. For the evaluation, PNF-based scour detection, a nondestructive
testing technique that has been receiving increasing attention, was adopted. First, a series of lab experiments was conducted using idealized
piers partially embedded in two representative soils, that is, a sand and a clay, to measure the PNF-scour depth relationship. Next, a math-
ematical model was established and numerically implemented to predict the PNF of the idealized piers for scour detection. The soil-structure
interaction was formulated using the Winkler model, which only considers the modulus of subgrade reaction for soils, and the Pasternak
model, which considers the shear interaction in addition to the modulus. The numerically computed PNFs were then compared with those
from the experiments in this study and a documented field test. Our results clearly show that when structures are partially embedded in soils,
the Winkler model yields a better PNF prediction than the Pasternak model, regardless of the types of test piers and soils. This finding is
different from those obtained in the dynamic response of structures resting on or fully embedded in an elastic foundation (i.e., not partially
embedded), where the Pasternak model yields more realistic results than the Winkler model because of its consideration of the continuity of
foundation media via the shear interaction. Because of the shear interaction, the PNFs predicted with the Pasternak model in this study are
about 24%–38% and 31%–39% higher than the predictions with the Winkler model and the measured PNFs, respectively. DOI: 10.1061/
(ASCE)GM.1943-5622.0001519. © 2019 American Society of Civil Engineers.

Author keywords: Predominant natural frequency; Scour detection; Winkler soil-structure interaction; Pasternak soil-structure interaction;
Shear interaction.

Introduction

The dynamic behavior of structures with soil-structure interaction
(SSI) is a significant consideration in the design of structures, es-
pecially those subjected to dynamic loads from blasting waves
(Huang et al. 2011), earthquakes (Far et al. 2013), wind actions
(Lombardi et al. 2013), and so on. Understanding SSI is also critical
to structural health monitoring that is based on the dynamic re-
sponses of structures (e.g., natural frequency). Because of SSI, the
dynamic responses of structures are very sensitive to soil material
properties (e.g., soil stiffness). Taking the frequency-based scour
detection, for example, scour severity around bridge foundations
can be detected by investigating changes in the predominant natural
frequency (PNF) of a bridge or bridge component such as a pier
(Ju 2013; Prendergast et al. 2013; Bao and Liu 2016). Progressive
scour reduces the stiffness of a bridge pier because of the loss of
support from the surrounding soils, which causes the PNF to de-
crease. The progression of scour, in fact, reduces the interaction

between the pier and soils by removing soils around the pier, lead-
ing to changes in SSI during the scour development. As a result, it
is vital for accurately modeling dynamic SSI to obtain accurate
PNFs for such an application as well as any other structural health
monitoring applications involving dynamic SSI.

Because of the importance of SSI, many research efforts have
been made to understand and characterize the dynamic responses of
a test structure involving SSI, for example, Gerolymos and Gazetas
(2006), Liu et al. (2014), and Hussien et al. (2018). The p-y curve is
an acceptable approach to obtain the soil stiffness in SSI, which has
been verified by field test results with different soils (Matlock 1970;
Cox et al. 1974; Reese and Welch 1975) and pile groups (Taghavi
and Muraleetharan 2016). This approach has also been applied to
structural health monitoring, particularly the previously introduced
frequency-based bridge scour detection, where bridge piers are par-
tially embedded in soils. Prendergast et al. (2013) performed sim-
ulations of an idealized pier embedded in soils as a beam partially
embedded in an elastic foundation to detect progressive scour in
terms of the PNF of that pier. Other researchers, for example, Ko
et al. (2010) and Foti and Sabia (2011), investigated the influence
of scour progression on the dynamic responses of a bridge using the
sprung-beam elements to represent SSI. Also, Ju (2013) developed
numerical methods to compute the PNF for scour detection by ac-
counting for SSI with the effective mass theory. These studies were
mostly conducted directly or indirectly based on a simple model,
that is, the Winkler model, for formulating dynamic SSI.

However, no research has been reported on the effectiveness of
existing SSI formulations for a typical dynamic scenario: the fre-
quency of a structure partially embedded in the soil. In addition to
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theWinkler model, a comprehensive review conducted by Dutta and
Roy (2002) summarized many methods for formulating SSI in ad-
dition to the Winkler model. Among them, the Pasternak model is
deemed an improved version of the Winkler model by adding the
shear interaction between the spring elements in order to consider
more realistic soil characteristics (i.e., continuity of foundation
media). Because of this change, the Pasternak model yields more
realistic results compared to the Winkler model for the dynamic re-
sponse of structures resting on an elastic foundation by additionally
considering the continuity of the nature of foundation media (Dutta
and Roy 2002). Also, the comparison results (Wang et al. 2014,
2017) showed that the Pasternak model is more accurate than the
Winkler model for analyzing the dynamic responses of piles fully
embedded in soils. As a result, the Pasternak model has been used in
many studies to formulate SSI for obtaining the dynamic response
of structures resting on or fully embedded in an elastic foundation
(Valsangkar and Pradhanang 1988; De Rosa and Maurizi 1998;
Wang et al. 2014). A detailed summary regarding the free vibration
of beams resting on the Pasternak foundation can be found in Lee
et al. (2014). However, no study has been reported on analyzing the
PNF of structures (e.g., bridge piers) partially embedded in soils
(i.e., not resting on or fully embedded) with the Pasternak model.
Therefore, there is still an urgent need to evaluate the Pasternak
model for analyzing the dynamic responses of structures partially
embedded in soils.

In addition, in the application of frequency-based scour moni-
toring, numerical methods are preferable for complicated bridge
structures (Ko et al. 2010; Foti and Sabia 2011; Prendergast et al.
2013; Prendergast and Gavin 2016). However, detailed procedures
for a straightforward and easily implementable numerical frame-
work for calculating the PNF with detailed SSI are still absent in
the literature. Prendergast et al. (2013) performed simulations using
MATLAB code for PNF-based scour detection. A following study
(Prendergast and Gavin 2016) investigated the influence of coeffi-
cients of subgrade reaction models on the predicted PNFs. How-
ever, a comprehensive theoretical model involving SSI and details
about its numerical implementations are lacking.

To advance the topic, in this study, we evaluate two SSI for-
mulations, that is, the Winkler model and the Pasternak model,
for dynamic modeling in predicting the PNF of a structure partially
embedded in the soil. For the evaluation, PNF-based scour detec-
tion was adopted as the application to assist in our evaluation. The
main goal is to evaluate which SSI formulation yields a better pre-
diction of PNFs for scour detection. To achieve this goal, a series of
lab-scale tests was conducted first using idealized piers partially
embedded in typical less cohesive soils (sands) and cohesive soils
(clays) to cover two representative types of soils at most bridges. A
numerical framework was then developed with a comprehensive
governing equation for an idealized beam partially embedded in
a semiinfinite linear elastic medium. Detailed procedures for imple-
menting the numerical framework were presented. Finally, the
PNFs calculated based on the Winkler and Pasternak SSI formu-
lations were discussed and compared with the experimental results
in this study and those from a documented field test.

Experiments

Experiment Setup

Prendergast et al. (2013) conducted multiple experimental studies to
investigate the change in the PNF of an idealized pier for scour de-
tection. The study of Prendergast et al. (2013) served as a prelimi-
nary assessment and provided a simple method for the subsequent
investigations of PNF-based scour detection. Based on the study of
Prendergast et al. (2013), in the current study, a lab-scale model with
idealized piers was constructed to assess the dynamic response of
piers partially embedded in a soil block. Lab-scale tests were per-
formed based on previous studies (Shinoda et al. 2008; Prendergast
et al. 2013) by installing an accelerometer on the piers. Data mea-
sured by the accelerometer were transformed from the time domain
to the frequency domain to obtain the PNF using the fast Fourier
transform (FFT). Different geometric configurations and materials
were adopted for the test piers to represent different pier types. The
geometric properties are detailed in Table 1. The geometric similar-
ity ratio can be calculated using either test diameter/real diameter
or test length/real length (test diameter=real diameter ¼ test length=
real length) based on the typical dimensions of the piles. Both the
steel rod and hollow pipe have the same ratio of 1=11. A similar two
structures will be used for dynamic modeling in the later section.

Two types of soils, that is, a sand and clay, were used for the test
to consider two major representative SSI scenarios at most bridges.
The sand was uniform with almost the same grading, which is a
typical sand collected at a riverbed to represent less cohesive soils.
The clay had medium plasticity, which is a typical clay collected at
a landslide site near a river to represent cohesive soils. The scales
were marked on the test piers to easily read scour depths [Fig. 1(a)].
The soils were compacted layer by layer in increments of 150 mm,
in which the sand was compacted to an approximate 100% relative
density. The soils were housed in a plastic tank with dimensions of
520, 855, and 1,280 mm in depth, width, and length, respectively.

The accelerometer was mounted at a location that was very close
(10 mm) to the top of the piers to record dynamic data based on the
previous study in Bao et al. (2017), as shown in Figs. 1(a and b).
The accelerometer (PCB model type: 333B30, PCB Piezotronics,
Depew, New York) has a sensitivity of 10.2 mV=ðm=s2Þ, frequency
range of 0.5–3,000 Hz, measurement range of �490 ðm=s2 pkÞ,
broadband resolution of 0.0015 ðm=s2 rmsÞ, and spectral noise of
14 ðμm=s2Þ= ffiffiffiffiffiffi

Hz
p

. The accelerometer and a modal hammer were
connected to a data acquisition system to collect dynamic data, as
shown in Fig. 1(c). The modal hammer (PCB model type: 086D05,
PCB Piezotronics, Depew, NewYork) had a sensitivity of 0.23 mV=N
and measurement range of �22,240 Npk. The modal hammer was
used to generate vibration by applying a transient force on the plane
where the accelerometer was fixed. Dynamic signals of the pier and
transient force were recorded by the data acquisition system after the
transient force was applied. The data acquisition system included a
PicoScope 3205 oscilloscope and a PCB 442C04 4-channel sensor
signal conditioner (PCB Piezotronics, Depew, NewYork). The oscillo-
scope had a maximum sampling rate of 500 MS=s, analog-to-digital

Table 1. Geometries of the idealized piers and initial scour situations

Test pier Height (mm)
Width/length

(mm) Diameter (mm)
Embedded length
(sand/clay) (mm)

Scour increment
(mm)

Soil
compactness

Concrete column 306 — 153 226=156 20 High
Concrete brick 406 77=100 — 236=166 20 High
Steel rod 1,640 — 25 300=250 20 High
Hollow pipe 1,610 — 49=51 (inter/outer) 290=260 20 High
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converter (ADC) effective number of 7.6 bits, and less than 0.01 Hz
for the frequency resolution of output signals. The signal condi-
tioner had a sensor excitation voltage of 25.5 V� 1.5 V, frequency
response of 5% (Hz=kHz), and spectral noise of 0.57 ðμVÞ= ffiffiffiffiffiffi

Hz
p

.
To obtain enough data for postprocessing, the system was estab-
lished to work at a scanning frequency of 3,000 Hz.

Different scour depths were produced by removing soils around
the test piers, in which an increment of 20 mm was used, as pre-
sented in Figs. 1(a, b, and d). Scour holes were symmetrical and
constructed to be a cone shape. The initial scour level (Level 1)
corresponded to the situation of no scour hole around the pier.
The Scour level 6 was the final scour depth for each test pier,
for which five layers of soil had been removed. The scour condi-
tions adopted in the experiment are detailed in Table 1. The sche-
matic of the geometry of the test piers is shown in Fig. 2. The
simulation results concluded by Ju (2013) for the full-scale bridge
showed that the difference in the PNFs calculated with and without
the fluid-structure interaction was negligible. Therefore, the effect
of the fluid-structure interaction was assumed to be negligible in
this study. However, soils around a bridge pier, in reality, are always
under water. In order to reflect this situation, water was added into
the soil matrices, and the gravimetric water contents of the sand and
clay were 4% and 23%, respectively.

Laboratory Test Results

The impulse force, which was applied to the piers in the test, was
analyzed to understand its frequency spectrum and the duration of

contact between the hammer and pier. This is because the impulse
force determines the magnitude of negative effects generated by the
hammer on the measured PNF (Shinoda et al. 2008; Foti and Sabia
2011). The evaluation results indicated that the transient impulse
force, which was adopted in this study, is an ideal impulse force as
described in Shinoda et al. (2008). The contact duration was around
1.8 ms, and almost a constant frequency amplitude was maintained
within the duration, which is similar to the results in the study of
Bao et al. (2017).

Modal 
hammer

Data acquisition 
system

(c)

Accelerometer

Sand matrix

Scour hole

Concrete column

(a) (b)

Concrete brick

(d)

Hollow pipe

Clay matrix

Clay matrix

Fig. 1. Laboratory scour test: (a) concrete column in the sand; (b) concrete brick in the clay; (c) data collection; and (d) hollow pipe in the clay.
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Fig. 2. Schematic of the geometry of test piers.
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The measured dynamic responses of the hollow pipe and con-
crete column in terms of acceleration in the sand and clay at Scour
levels 1 and 6 are shown in Fig. 3. The acceleration contained
a significant amount of high-frequency vibration, including as-
sembled and superposed waveforms due to local effects (Roy and
Ganesan 1995; Prendergast et al. 2013). However, the PNF of the
pier was usually in the low-frequency range, which is irrelevant
to those high frequencies. Therefore, a low-pass filter was applied
to filter the signals of acceleration in Fig. 3. A similar approach for
postprocessing dynamic signals was also applied in the study of
Prendergast et al. (2013). The filtered signals of the hollow pipe
are shown in Figs. 4(a and b). The results clearly show that the
periods in the filtered signal of Scour level 6 are significantly larger
than those of Scour level 1 because of a greater scour depth. Sim-
ilar results were also obtained in the filtered signals of the concrete
column. As shown in Figs. 4(c and d), the periods in the filtered
signal of Scour level 6 are obviously greater than those of Scour
level 1.

To obtain the PNF at each scour level, the FFT was used to
transfer the dynamic signals from the time domain to the frequency
domain. As shown in Fig. 5(a), the PNF of the hollow pipe de-
creased from 20.5 (Level 1) to 14.2 Hz (Level 6) in the sand matrix.
The PNF decreased from 17.6 to 10.5 Hz in the clay matrix. The
PNF of the concrete column also decreased from 130.6 (Level 1) to
51 Hz (Level 6) in the sand and decreased from 37 to 19.2 Hz in the
clay [Fig. 5(b)]. In all these tests, there is a clear reduction in the
PNF with an increase of the scour depth, regardless of the types of
piers and soils [Figs. 5(c and d)].

Numerical Analysis

Mathematical Model

In this section, a numerical framework was developed to simulate
the previous lab-scale tests. Two widely used methods for the SSI
formulation, that is, the Winkler model and the Pasternak model,
were adopted for calculating the PNF. The Pasternak model is an
improved version of the Winkler model by simulating an elastic
foundation with two foundation parameters (Wang et al. 2001; Chen
et al. 2004). To be more specific, it involves the shear interaction
between the spring elements by adding a shear layer connecting the
ends of the springs to a beam or a plate (Dutta and Roy 2002). The
two foundation parameters are the modulus of subgrade reaction
(Winkler parameter) and the Pasternak parameter. The latter is re-
lated to the shear modulus of the shear layer in the soil media (Wang
et al. 2013).

The Pasternak model has been widely used to investigate vibra-
tion of beams on an elastic foundation (Yokoyama 1991; De Rosa
1995; Chen et al. 2004). The hypothesis of the Pasternak model is
that soils can be represented as a series of unconnected and concen-
trated springs perpendicular to the pier with the shear interaction
between the spring elements (Dutta and Roy 2002), which is con-
sidered using a shear layer (Fig. 6). The test pier embedded in the
soils is modeled using a series of beam elements. For the Winker
SSI, it can be easily achieved by directly removing the shear layer.
In this section, the hollow pipe and steel rod used in the previous
lab-scale tests were selected for the simulation. The conceptual
models used to simulate the lab-scale tests are shown in Fig. 6.

0 0.1 0.2 0.3 0.4 0.5
-10

-5

0

5

10

Time (s)

A
cc

el
er

at
io

n 
(m

m
/s

2 )

Scour Level 1
Scour Level 6

0 0.1 0.2 0.3 0.4 0.5
-10

-5

0

5

10

Time (s)

A
cc

el
er

at
io

n 
(m

m
/s

2 )
Scour Level 1
Scour Level 6

0 0.05 0.1 0.15 0.2
-8

-6

-4

-2

0

2

4

6

8

Time (s)

A
cc

el
er

at
io

n 
(m

m
/s

2 )

Scour Level 1
Scour Level 6

0 0.05 0.1 0.15 0.2
-8

-6

-4

-2

0

2

4

6

8

Time (s)

A
cc

el
er

at
io

n 
(m

m
/s

2 )

Scour Level 1
Scour Level 6

(a) (b)

(c) (d)

Fig. 3. Measured acceleration at (a) Scour levels 1 and 6 of the hollow pipe in the sand; and (b) clay; Scour levels 1 and 6 of the concrete column
in the (c) sand; and (d) clay.
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The springs were gradually removed from the top to the correspond-
ing depth measured in the tests in order to simulate progressive
scour. In the following, detailed mathematical descriptions for the
previous two SSI formulations are presented.

The dynamic responses of a beam fully embedded in an infinite
linear elastic medium can be formulated using the following equa-
tion (Wang et al. 2013):

müþ cu̇þ EIu 000 0 − jü 00 þ k0u − k1u 00

¼ pd − h
2
½u 0ðk0u − k1u 00Þ� 0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
quadraticnonlinear term

− EI½u 0ðu 00Þ2 þ ðu 0Þ2u 000� 0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
cubic nonlinear term

−
�
u 0

2

Z
x

l
m

∂2

∂t2
Z

x

0

ðu 0Þ2dxdx
� 0

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
cubic nonlinear term

ð1Þ

where u = lateral deflection (m); u̇ and u 0 denote the first derivative
of u with respect to time and deflection, respectively; m = mass
per unit length (kg=m) with the same cross-section of the beam;
pd = external distributed load (N=m); c = damping; EI = flexural
rigidity of the beam (kN m2); j ¼ ∫ Ac

ρby2dAc is the rotary inertia,

in which Ac is the cross-sectional area of the beam (m2) and ρb is
the beam density (kg=m3); k0 = modulus of subgrade reaction

(N=m2); and k1 = Pasternak parameter (N). The three rightmost
terms on the right-hand side of Eq. (1) are nonlinear terms.

By neglecting all nonlinear high-order, damping, and external
load terms, the governing equation of the linear undamped free
vibration of a beam fully embedded in a semiinfinite linear elastic
medium can be written as

müþ EIu 000 0 − jü 00 þ k0u − k1u 00 ¼ 0 ð2Þ
However, in reality, bridge piers are partially embedded in a soil

medium, which cannot be described by Eq. (2) directly. To account
for the partially embedded pier, Eq. (2) is therefore rewritten to a
piecewise governing equation, where the modulus of subgrade re-
action and the Pasternak parameter only exist in the embedded part
of the beam [Eq. (3)]

müþ EIu 000 0 − jü 00 þ k0u − k1u 00 ¼ 0 0 ≤ x ≤ ls ð3Þ

müþ EIu 000 0 − jü 00 ¼ 0 ls ≤ x ≤ l ð4Þ

where ls and l = embedded length (m) and total length (m) of the
beam, respectively. If no external load acts on the beam, this beam
undergoes free linear vibration. The natural frequency of the beam
then can be obtained through the modal analysis of the beam.
For this purpose, the general solution to this motion equation can
be assumed to be of the form u ¼ Uaeiωt, where ω is the angular
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Fig. 4. Filtered acceleration: the hollow pipe in the (a) sand; and (b) clay; the concrete column in the (c) sand; and (d) clay.
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Fig. 5. Measured PNFs: (a) unfiltered PNF spectra of the hollow pipe; (b) unfiltered PNF spectra of the concrete column; (c) PNF variations in the
sand; and (d) PNF variations in the clay.
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R
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139 (clay)

Beam
Elements
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 25 (clay)

Sprung-Beam
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Soil Soil
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Fig. 6. Schematic of discrete springs spaced along the test piers for (a) the hollow pipe; and (b) the steel rod.
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natural frequency of the beam and Ua is the modal shape function.
Substituting this solution into Eqs. (3) and (4), one obtains

EIU 000 0
a − ðk1 − jω2ÞU 00

a þ ðk0 −mω2ÞUa ¼ 0 0 ≤ x ≤ ls ð5Þ

EIU 000 0
a þ jω2U 00

a −mω2Ua ¼ 0 ls ≤ x ≤ l ð6Þ

To describe a beam that is partially embedded in a semiinfinite
linear elastic medium, the previous piecewise equation is rewritten
into the following equation system:

EIU 000 0 − ðk1 − jω2ÞU 00 þ ðk0 −mω2ÞU ¼ 0 0 ≤ x ≤ ls ð7Þ

EIV 000 0 þ jω2V 00 −mω2V ¼ 0 ls ≤ x ≤ l ð8Þ

where U = modal shape function in the soil; and V = modal shape
function in the air (no interaction with soil). The previous equations
are fourth-order ordinary differential equations. The temporal terms
were eliminated to obtain the angular natural frequency ω. It can be
seen that both Eqs. (7) and (8) are eigenvalue problems, which can
be rewritten into a general form of an eigenvalue problem

U 000 0 − k1
EI

U 00 þ k0
EI

U þ ω2

�
j
EI

U 00 − m
EI

U

�
¼ 0 ð9Þ

V 000 0 þ ω2

�
j
EI

V 00 − m
EI

V

�
¼ 0 ð10Þ

Therefore, the natural frequency of the beam f can be computed
simply using f ¼ ω=2π if the angular natural frequency ω is ob-
tained under the specified boundary conditions. According to the
lab-scale tests in the “Experiments” section, the boundary condi-
tions of a beam that is partially embedded in a semiinfinite linear
elastic medium can be formulated as

Embedded part

�
U 00jx¼0 ¼ 0

U 00 0jx¼0 ¼ 0
ð11Þ

Continuous

8>>>><
>>>>:

Ujx¼d ¼ Vjx¼ls

U 0jx¼d ¼ V 0jx¼ls

U 00jx¼d ¼ V 00jx¼ls

U 00 0jx¼d ¼ V 000jx¼ls

ð12Þ

Exposed part

�
V 00jx¼l ¼ 0

V 000jx¼l ¼ 0
ð13Þ

Numerical Implementation

Detailed numerical implementations are presented in this section.
One simple and efficient numerical strategy to solve Eqs. (9)
and (10) with the boundary conditions of Eqs. (11)–(13) is the finite
difference method (FDM). The discretization of Eqs. (9) and (10)
using the FDM is performed as

δ4xUi − k1
EI

δ2xUi þ
k0
EI

Ui þ ω2

�
j
EI

δ2xUi − m
EI

Ui

�
¼ 0 ð14Þ

δ4xVi þ ω2

�
j
EI

δ2xVi − m
EI

Vi

�
¼ 0 ð15Þ

where δx = discretization expression of the modal shape function,
which is derived using the Taylor series expansion (LeVeque 2007).
The derivation is described subsequently in detail.

Applying the Taylor series expansion to the second and
fourth derivatives of U and neglecting the transaction errors, one
obtains

U 000 0 ≈ Ui−2 − 4Ui−1 þ 6Ui − 4Uiþ1 þ Uiþ2

Δx4
ð16Þ

U 00 ≈ Ui−1 − 2Ui þ Uiþ1

Δx2
ð17Þ

Substituting Eqs. (16) and (17) into Eq. (9), one obtains the
linear equations of the system

ðAþ ω2BÞfUg ¼ 0 ð18Þ

where A and B = diagonal matrices and fUg ¼
½Uiþ1;Uiþ2; : : : ;Un−1;Un�T , where i is the maximum index of V
and n is the maximum index of V and U. Eq. (18) is equivalent to
Eq. (14). A similar procedure can be made to obtain linear equa-
tions of the system for V in the air

ðCþ ω2DÞfVg ¼ 0 ð19Þ

where C and D = diagonal matrices; and fVg ¼ ½V1;V2; : : : ;Vi�T .
The incorporation of the boundary conditions of Eqs. (11)–(13)

in Eqs. (18) and (19) is crucial for accurately modeling test piers
partially embedded in soils. Eq. (13) includes the second and
third derivatives of V. By applying the Taylor series expansion
to obtain the discretization of V in Eq. (13) and substituting them
into Eq. (19), one obtains the matrix formulation of Eq. (19) as
Eq. (20)

0
BBBBBBBBBBB@

2
666666666664

1 −2 1 0 · · · 0

−2 5 −4 1 · · · 0

1 −4 6 −4 . .
.

0

0 1 −4 6 . .
.

1

..

. ..
. . .

. . .
. . .

. −4
0 0 0 1 −4 6

3
777777777775

þω2

2
666666666664

2CCþDD 0 0 · · · 0 0

CC DD CC · · · 0 0

0 CC DD . .
.

0 0

0 0 CC . .
.

CC ..
.

..

. ..
. . .

. . .
.

DD CC

0 0 0 0 CC DD

3
777777777775

1
CCCCCCCCCCCA

2
666666666664

V1

V2

V3

..

.

Vi−1
Vi

3
777777777775
¼ 0

ð20Þ

where CC ¼ Δx2j=EI and DD ¼ −ðΔx4mþ 2Δx2jÞ=EI. Simi-
larly, the boundary condition of Eq. (11) can be implemented into
Eq. (18). Thus, the matrix formulation of Eq. (18) is

© ASCE 04019167-7 Int. J. Geomech.
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0
BBBBBBBBBBB@

2
666666666664

BB NN 1 0 : : : 0

NN BB NN 1 · · · 0

1 NN . .
. . .

. . .
. ..

.

..

. . .
. . .

.
BB NN 1

0 0 1 NN BB − 1 2þ NN

0 0 0 1 −2 BBþ 2 NN þ 3

3
777777777775
þ ω2

2
666666666664

DD CC 0 · · · 0 0

CC DD CC · · · 0 0

0 CC DD . .
.

0 0

0 0 . .
. . .

.
CC ..

.

..

. ..
. . .

.
CC DD CC

0 0 0 0 0 2CCþDD

3
777777777775

1
CCCCCCCCCCCA

2
666666666664

Uiþ1

Uiþ2

Uiþ3

..

.

Un−1
Un

3
777777777775
¼ 0 ð21Þ

where BB ¼ 6þΔx4k0=EI − 2Δx2k1=EI and NN ¼ −4 − k1Δx2=EI. Based on the boundary conditions of Eq. (12), the modal shape
at the bottom of the exposed part (in the air), that is, Vi, is equivalent to that at the top of the embedded part (in the soil), that is, Uiþ1,
because the test piers are continuous in reality. To achieve this, two steps should be taken to obtain the complete matrix of the system.
The first step is to make Vi ¼ Uiþ1, which can be achieved by using the same coefficient in the matrix for variables in the lines of Vi and
Uiþ1. Second, the coefficients in the matrix for variables in the lines of Vi−1 and Uiþ2 should be rearranged to avoid using Vi and Uiþ1

twice because Vi ¼ Uiþ1. The diagonal matrix of the whole system including the boundary conditions of Eqs. (11)–(13) is obtained
subsequently

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

2
666666666666666666666666666666664

1 −2 1 0 : : : 0 : : : : : : : : : : : : : : : 0

−2 5 −4 1 : : : 0 . .
. . .

. . .
. . .

. . .
. ..

.

1 −4 6 −4 . .
.

0 : : : . .
. . .

. . .
. . .

. ..
.

0 1 −4 6 . .
.

1 0 : : : . .
. . .

. . .
. ..

.

..

. ..
. . .

. . .
. . .

. −4 0 1 0 . .
. . .

. ..
.

0 0 0 1 NN BB 0 NN 1 0 . .
.

0

0 : : : 0 1 NN 0 BB NN 1 0 : : : 0

0 . .
.

: : : 0 1 0 NN BB NN 1 : : : 0

..

. . .
. . .

. . .
. . .

. . .
.

1 NN . .
. . .

. . .
. ..

.

..

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

.
BB NN 1

..

. ..
. . .

. . .
. . .

. . .
.

0 0 1 NN BB − 1 2þ NN

0 : : : : : : : : : : : : : : : 0 0 0 1 −2 BBþ 2NN þ 3

3
777777777777777777777777777777775

þ ω2

2
666666666666666666666666666666664

2CCþDD 0 0 : : : 0 0 : : : : : : : : : : : : : : : 0

CC DD CC : : : 0 0 . .
. . .

. . .
. . .

. . .
. ..

.

0 CC DD . .
.

0 ..
. . .

. . .
. . .

. . .
. . .

. ..
.

0 0 CC . .
.

CC 0 . .
. . .

. . .
. . .

. . .
. ..

.

..

. ..
. . .

. . .
.

DD CC 0 . .
. . .

. . .
. . .

.
0

0 0 0 0 CC DD 0 CC 0 . .
. . .

.
0

0 . .
.

: : : 0 CC 0 DD CC 0 . .
. . .

. ..
.

..

. . .
. . .

. . .
.

0 0 CC DD CC . .
. . .

. ..
.

..

. . .
. . .

. . .
. . .

. . .
.

0 CC DD . .
. . .

. ..
.

..

. . .
. . .

. . .
. . .

. . .
. . .

.
0 . .

. . .
.

CC 0

..

. ..
. . .

. . .
. . .

. . .
. . .

. . .
. . .

.
CC DD CC

0 : : : : : : : : : : : : : : : : : : : : : : : : 0 0 2CCþDD

3
777777777777777777777777777777775

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

2
66666666666666666666666666664

V1

V2

V3

..

.

Vi−1
Vi

Uiþ1

Uiþ2

Uiþ3

..

.

Un−1
Un

3
77777777777777777777777777775

ð22Þ

Therefore, a nontrivial solution of Eq. (22) can be obtained for the PNF of the test piers in the experiments. The discretization and
eigenvalue solutions were implemented and solved with MATLAB. More details regarding the implementations of boundary conditions
of Eqs. (11) and (13) to the diagonal matrices can be referred to in Ansari et al. (2011). The model validation will be detailed later in
“Results and Discussion.”
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Determination of Soil Stiffness

To correctly model the behavior of SSI, the small-strain stiffness
method (SSSM) and the American Petroleum Institute Method
(APIM) were used in this study because both yielded good results
for the lateral spring stiffness of soils around piers (Prendergast
et al. 2013). The SSSM can be used to determine the lateral stiffness
of both sands and clays. The lateral stiffness of sands also can be
rationally estimated by applying the initial modulus of subgrade re-
action in an expression using the APIM according to the API design
code (API 2000). However, the APIM was not capable of evaluating
the lateral stiffness of clays because of the lack of an existing ex-
pression in the API design code.

SSSM Stiffness for Sands and Clays
A transient lateral dynamic load applied at the top of the pier causes
small strains in a soil mass in an ideal test (Atkinson 2000). The
SSSM-based soil lateral stiffness is associated with strains of a
small order caused by such a transient lateral dynamic loading. The
elastic modulus Es is a critical parameter in dynamic analyses on
the small strain level. To obtain Es of soils used in laboratory tests,
a geophysical method (Luna and Jadi 2000) was used in this study.
As shown in Fig. 7, two metal columns were embedded into the
soils (the sand or clay) at a certain wave propagation distance. The
velocity of the compression wave in the soil was computed by
measuring the difference between the arriving times at the impact
point and the point where the signal was received using an accel-
erometer. In this study, Es was assumed to be uniformly distributed
within the soils because the soils used in the tests were compacted
uniformly. The velocities of the compression wave in the sand and
clay matrices were estimated to be 213 and 216 m=s, respectively.

When the velocity of the compression wave was obtained, the
Es of the soil then could be calculated using the following expres-
sion (Luna and Jadi 2000)

Es ¼
ρV2

cð1þ νsÞð1 − 2νsÞ
1 − vs

ð23Þ

where νs = small strain Poisson’s ratio of soils; Vc = compression
wave velocity (m=s); and ρ = density of soils (kg=m3).

The relationship between the modulus of subgrade reaction k0
and the other basic material properties in the elastic continuum is
given by Eq. (24) (Ashford and Juirnarongrit 2003). The lateral
spring stiffness thus can be determined by multiplying k0 (kN=m2)
by the spacing of the adjacent springs

k0 ¼
1.0Es

1 − ν2s

�
EsD4

p

EpIp

�
1=12

ð24Þ

where Dp = pier diameter (m); and EpIp = flexural rigidity of the
pier (kNm2).

APIM Stiffness for Sands
The APIM provides initial subgrade reaction curves with respect
to the relative density of sands based on the load-deflection (p-y)
curves (API 2000) to determine the lateral stiffness of sands. The
lateral p-y relationship for sands is described using the following
equation (API 2000):

p ¼ Afpu tanh

�
kH
Afpu

y

�
ð25Þ

where p = lateral load per unit length of a pier (kN=m); y = lateral
deflection (m); Af = factor to account for the cyclic or static loading
condition; pu (kN=m) = ultimate bearing capacity at a certain depth
of H; and k = initial modulus of subgrade reaction (kN=m3), which
can be determined based on the relative density of sands. Because
a transient lateral impulse force impacting a pier within a very short
duration induces very small strains in the sand, the dynamic re-
sponse of the sand mass on the sand-pier boundary can be repre-
sented by differentiating Eq. (25) at y ¼ 0 (Prendergast et al. 2013)

dp
dy

¼
Afpu

kH
Afpu

cosh2
	

kH
Afpu

y


�����
y¼0

¼ kH ð26Þ

Based on that, the lateral stiffness of sands of SSI is given by
multiplying kH in Eq. (26) by the spacing of the adjacent springs at
discrete locations along the pier.

Pasternak Parameter Determination
The Pasternak parameter of the shear layer in Fig. 6 is a crucial
parameter for correctly modeling the behavior of the Pasternak SSI.
However, the ways to determine the Pasternak parameter are still
limited in the existing studies (Breeveld 2013). According to Wang
et al. (2013), the Pasternak SSI is independent of the soil depth.
Thus, one can determine the Pasternak parameter k1 using the fol-
lowing equation (Wang et al. 2013):

k1 ¼
E0DpA1

4ð1þ ν0Þγ
ð27Þ

where ν0 ¼ νs=ð1 − νsÞ; E0 ¼ Es=ð1 − ν2sÞ; A1 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dbð1 − ν20Þ=ðE0DpÞ3

q
; Db ¼ EI=ð1 − v2bÞ, in which νs and vb

are the Poisson ratios of the soil and the beam, respectively; EI =
flexural rigidity of the beam (kNm2); Es = elastic modulus of the
soil medium (N=m2); and γ = attenuation parameter, which was
assumed to be 1 in this study according to Wang et al. (2013). The
Pasternak SSI can degenerate into the Winkler SSI when k1 ¼ 0.

Results and Discussion

In this section, the lateral stiffness of soils derived from both the
SSSM and the APIM for the simulations is presented first. Then,
the numerically computed PNFs are compared with the experimen-
tally measured PNFs to evaluate the SSI formulations, that is, the
Winkler model and the Pasternak model, in predicting the PNF.

Soil Lateral Stiffness

The SSSM-based lateral stiffness of soils was calculated using
Eq. (24). The real soil behavior for the lateral stiffness, therefore,

Propagation 
distance

Impact parallel 
to distance

Accelerometer

Concrete column

Fig. 7. Geophysical methods for Es measurements.
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can be obtained accurately if Es is precisely measured. Fig. 8 shows
the lateral stiffness for the sand computed using the APIM and for
the sand and clay calculated using the SSSM. In the API code, k is
estimated based on the relative density of sands, whereas the maxi-
mum k by default in the API code can only be estimated at a relative
density of 80%. Because of this, the APIM-based lateral stiffness

may fail to reflect the real situation (almost 100% relative density)
in the laboratory tests by underestimating the lateral stiffness. This
can also be seen from the comparison between the SSSM and
APIM stiffnesses for the sand in Fig. 8. The APIM stiffness esti-
mated using a relative density of 80% is much lower than the SSSM
stiffness. The SSSM stiffness could be accurate because it is com-
puted based on the parameters of the soils tested experimentally.
The APIM stiffness should be comparable to the SSSM stiffness.
Because the APIM stiffness increases with the soil depth, one way
to solve this problem is that the average of the APIM stiffness is
comparable to the SSSM stiffness. Therefore, k was multiplied by
5 to obtain a reasonable APIM stiffness in the simulations. A sim-
ilar treatment to obtain the reasonable APIM stiffness was also
done in Prendergast et al. (2013).

Validation and Evaluation

The computed PNFs were compared with the measured PNFs
to validate the numerical model and also to evaluate the Winkler
and Pasternak SSIs for PNF prediction. In the sand, as shown in
Fig. 9(a), the PNFs of the hollow pipe obtained using both the
SSSM-based and APIM-based lateral stiffness calculated using the
Winkler SSI agreed very well with the experimental data. This also
happened with the steel rod, as shown in Fig. 9(c), though the com-
puted PNFs were slightly higher than the measured PNFs. The ma-
jor reason for this slight error in the computed PNFs is that the
measured PNFs are lower than those in an ideal test. This is because

Fig. 9. PNF comparisons: (a) hollow pipe in the sand; (b) hollow pipe in the clay; (c) steel rod in the sand; and (d) steel rod in the clay.

Fig. 8. Stiffness of springs used in numerical simulations for the
hollow pipe.
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the embedded length of the steel rod was very small compared to its
total length, and consequently, the free vibration generated by the
modal hammer resulted in a small gap between the soil and the steel
rod at locations close to the soil surface. This led to low PNFs in the
measurement. However, the springs used to simulate soils around
the pier interacted with the pier in an ideal condition, leading to
computed PNFs that were higher than the measured PNFs. Because
of this, the computed PNFs of the steel rod in Figs. 9(c and d) were
higher than the measured PNFs.

However, when the Pasternak parameter was taken into account,
the computed PNFs were higher than the measured PNFs for both
the hollow pipe (about 24%) and steel rod (about 38%), as illus-
trated in Figs. 9(a and c), either using the SSSM-based or APIM-
based lateral stiffness. For the piers measured in the clay, values
about 39% higher for the hollow pipe and about 31% higher for the
steel rod were obtained when the Pasternak parameter was taken
into account, as shown in Figs. 9(b and d). The PNFs of both the
hollow pipe and steel rod calculated using the Winkler SSI were in
very good agreement with the experimental data. However, when
the Pasternak parameter was not equal to zero, the computed PNFs
were higher than the measured PNFs.

The comparison between the measured and computed PNFs in
Fig. 9 reveals that the Winkler SSI yielded better results than the
Pasternak SSI. To further prove this, the field test data measured by
Prendergast et al. (2013) for an idealized pier with more realistic
dimensions were compared with the computed PNFs using the
framework developed in this study. Prendergast et al. (2013) carried
out a field-scale test using an idealized pier with a length of 8.75 m
partially embedded in a dense sand site with a focus on detecting
the change in the PNF affected by scour progression. Based on the
soil properties measured in Prendergast et al. (2013), the PNF of
this field-scale pier was computed using 30 sprung-beam elements
(sprung-shear layer-beam elements for the Pasternak model) and
10 beam elements (each 219 mm long). The soil lateral stiffness
was calculated using the SSSM.

As shown in Fig. 10, the Winkler PNF decreased from 31.8 to
1.0 Hz with the increase of the scour depth, which matches very well
with the measured PNFs in the field test (Prendergast et al. 2013)
decreasing from 31.7 to 2.1 Hz. However, the Pasternak PNFs were
higher than the Winkler and field-scale measured PNFs. This differ-
ence was significant in the low scour depth range (0–2 m). With the

progression of scour, the Pasternak PNFs greatly decreased to be
close to the Winkler PNFs and the field-scale measured PNFs in the
high scour depth range (4–6 m). The reason for this is that the shear
interaction of springs decreases with scour progression. In this high
scour depth range, the shear interaction is less significant and the
system begins to act more like a loosely constrained cantilever be-
cause of limited SSI as a result of the small soil depth in contact.
However, it can also be seen that the Pasternak PNFs were still
higher than theWinkler and measured PNFs in this high scour depth
range, which is similar to what was concluded from Fig. 9.

Based on the results in Figs. 9 and 10, the Winkler SSI formu-
lation is a better option to formulate SSI in predicting the PNF of
an idealized pier partially embedded in an elastic foundation. The
Pasternak SSI formulation fails to correctly simulate the situation
because of the previous deviations. This finding is different from
those obtained in the dynamic response of structures resting on
an elastic foundation (i.e., not partially embedded). For example,
Valsangkar and Pradhanang (1988) obtained more realistic results
for the dynamic response of structures with the Pasternak model by
considering the continuity of foundation media via the shear inter-
action, which is not considered in the Winkler model. Also, Wang
et al. (2014) found that the Pasternak model is more accurate than
the Winkler model to analyze the dynamic responses of pile fully
embedded in soils. In addition, Wang et al. (2013) concluded that
the PNF (i.e., first frequency) of structures resting on the Pasternak
foundation is slightly lower (about 0.1%) than that on the Winkler
foundation, which is also different from the results obtained in this
study that Pasternak PNFs are higher than Winkler PNFs of a struc-
ture partially embedded in the soil.

This different finding is primarily attributable to two facts. First,
the PNF corresponds to the first mode shape of a beam in its free
vibration. The deformed pattern of a beam corresponding to the first
mode shape is the lateral bending in the case of a free-free beam
considered in this study. When a beam rests on the Winkler foun-
dation considered in the existing studies, the lateral deformation
corresponding to the first mode shape shears the Winkler springs.
However, the Winkler springs are mainly used to resist a compres-
sive force rather than a shearing force. Therefore, the Pasternak
foundation could yield more realistic PNF predictions by adding
the shear interaction between soil springs. This is different from the
situation discussed in this study, where a beam is partially embedded
in the Winkler foundation. This is because the lateral bending cor-
responding to the first mode shape compresses rather than shears
theWinkler springs. Therefore, adding the shear interaction between
soil springs further increases the strength of the Winkler SSI, lead-
ing to an overestimation of the predicted PNFs. Second, the previous
high deviations for the computed PNFs using the Pasternak SSI for-
mulation may be affected by the Pasternak parameter k1 calculated
using Eq. (27). There are a few ways in the literature to determine
the Pasternak parameter (Breeveld 2013), especially for the lateral
free vibration of a beam partially embedded in soils involving the
Pasternak SSI. As indicated by Eq. (27), the soil’s elastic modulus
mainly determines the Pasternak parameter. Such a parameter lin-
early varies with changes in the soil’s elastic modulus. This linear
variation, however, might cause unreasonable predictions for PNFs
of beams partially embedded in the Pasternak foundation. There-
fore, further research is required to provide more in-depth discussion
on the finding obtained in this study. Also, the water content af-
fects the PNF by influencing the soil’s elastic modulus to determine
the strength of SSI (Lu and Murat 2013), depending on soil types.
Future work thus is needed to further consider the water table effect,
especially for clays and silts, to more comprehensively evaluate the
performance of the two models adopted in this study.
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Fig. 10. PNF comparison between computed PNFs and field data
measured by Prendergast et al. (2013).
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Conclusions

This paper presents a comprehensive study to evaluate two pre-
dominant soil-structure interaction formulations, that is, the Winkler
model and the Pasternak model, for dynamic modeling in the pre-
diction of the PNFs of structures partially embedded in soils. The
evaluation was carried out with a significant application: PNF-based
bridge scour detection, a non-destructive testing technique that has
been gaining increasing attention. Lab-scale tests were conducted
first using idealized piers partially embedded in two major types
of soils, that is, a sand (less cohesive) and a clay (cohesive), to con-
sider two major representative SSI scenarios at most bridges. Then,
a numerical framework for an idealized beam partially embedded in
a semiinfinite linear elastic medium was developed. The implemen-
tations and discretization of the framework were presented in detail,
which have not been reported in the literature before. The numerical
results were then compared with the experimental data to evaluate
the SSI formulations for the PNF prediction.

The comparison between the computed and measured PNFs
indicated that the Winkler SSI formulation yields a better PNF
prediction when compared with the Pasternak model, regardless
of the types of test piers and soils. The Pasternak PNFs are about
24%–38% and 31%–39% higher than the Winkler and measured
PNFs, respectively. When compared with documented results for a
more realistic field test, the difference between the Pasternak and
measured PNFs from this documented test was significant in the
small scour depth range, whereas the Pasternak PNFs approached
the Winkler and field-scale measured PNFs in the high scour depth
range. This is because the shear interaction of springs decreases with
scour progression. However, the Pasternak PNFs are still higher than
the Winkler and measured PNFs in the high scour depth range.
This finding from the previous comparisons is different from those
obtained in the dynamic response of structures resting on or fully
embedded in an elastic foundation (i.e., not partially embedded),
where the Pasternak model can represent more realistic soil condi-
tions compared with the Winkler model by overcoming the limita-
tion of the Winkler model without considering the continuity of the
nature of foundation media. Based on the results obtained in this
study, it is recommended to use the Winkler SSI for dynamic mod-
eling in predicting the PNF for soil-structure systems where the
structure is partially embedded in the soil.
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